NodeXL Teaching Resources

A number of instructors have been using NodeXL to help teach social network analysis. It is relatively easy to use compared to many other network analysis and visualization tools, while still providing a rich set of metrics and visualization features. It is also free and integrates with the already familiar Excel (versions 2007 and more recent). This page is meant to collect information that can be useful in teaching with NodeXL. Please email Derek Hansen ( if you have been using NodeXL in your teaching or have resources that may be helpful to other instructors.

Derek Hansen, Ben Shneiderman, and Marc Smith have written a book titled Analyzing Social Media Networks with NodeXL: Insights from a Connected World published by Morgan Kaufmann. The book includes 3 parts: Part 1 introduces social media and network analysis, Part 2 is a tutorial introducing core network concepts while walking through the major features of NodeXL, and Part 3 is a collection of case studies written by various network experts analyzing different social media tools (e.g., email, forums, Facebook, Twitter, YouTube, Flickr, wikis, and hyperlink networks). If you are planning on using the book in any classes please send me a note indicating the class you'll be using it in and I'll add you to the list below. The datasets used in the book are included below.

Note that there is a student discount for the Pro Version of NodeXL, which allows students to use importers from Twitter and Facebook. It can also be installed on lab machines. Talk to Marc Smith ( about payment process. The free version of NodeXL can be used to analyze and visualize existing networks, though it is limited in some of its features.

Book Slides with Images

Slides from Analyzing Social Media Networks with NodeXL: Insights from a Connected World that include all images and their descriptions are below:

NodeXL Sample Files (version or later, for 32-bit or 64-bit machines)

IMPORTANT NOTE: After downloading these files make sure and use the Import --> "From NodeXL Workbook Created On Another Computer" to open the files. This will create your own copy and make sure that these versions open well in the most recent version of NodeXL that you have hopefully downloaded. Make sure you are using version or later.

  • Kite Network dataset - the simple kite networks used to teach basic network metrics
  • Serious Eats dataset - a multimodal network connecting people to blogs and/or forums
  • US Senate 2007 dataset - the co-voting network of US Senators in 2007
  • Les Miserable co-appearance network - the network of characters in Victor Hugo's book based on their appearing in the same scenes together.
  • css-d_email list network - a network of those posting to the css-d email list in Jan and Feb of 2007 (email addresses are anonymized)
  • ABC-D_email list network - Discussion list network discussed in Chapter 9 of the book. Note that Eigenvector centrality is calculated slightly differently, as is Betweeness Centrality (which used to be normalized to the node with the highest score, but no longer is).
  • Ravelry_Raw - Raw bimodal dataset of Ravelry users connected to 3 different discussion forum groups (discussed in Chapter 9 of book).
  • Ravelry Completed - Ravelry dataset and completed visualization that matches Figure 9.10 in book.
  • The following Enron Datasets are based on a subset of all available Enron email messages coded by researchers at the University of California at Berkeley (see Slight variations in numbers of email messages may result from different ways of handling non-standard email messages.
  • Enron_Dataset_Unfiltered - includes all 1,801 edges derived from work-related messages occurring later in the collection that discuss the California Energy Crisis.
  • Enron_Dataset_FERC_only - includes subset of unfiltered dataset that includes the term FERC somewhere in the email message (this is the one analyzed in Chapter 8 of the book).
  • Enron raw messages - Raw Enron messages that can be imported into NodeXL as described in Chapter 8 of the book)
  • Sample Facebook Egonetwork or Sample Facebook Egonetwork with Metrics - An anonymized Facebook network with name pulled from the most common 2014 baby names dataset. 

A very large and growing collection of images and NodeXL files are uploaded to the NodeXL Graph Gallery. Click on the image you like and look for the Download as NodeXL file link at the bottom of the page. Many of these graphs show off NodeXL's latest features which are not covered in the book.

Other Files of Interest

Korean Language Tutorial on NodeXL

Students of Assistant Professor, Annie So Young YU, Hannam University have put together this tutorial: Visualizing Networks with NodeXL 101 in the Korean Language

Assignments based on NodeXL

Feel free to use and/or modify the assignments provided below with proper attribution. If you have your own assignments to share please send them to Derek Hansen at

  • Facebook assignment for beginners. (see IT 101_Facebook_Lab.docx). This assignment was created by Derek Hansen for BYU's IT 101 students who have never been exposed to network analysis before. Students can complete it with some training in approximately 1-3 hours. Update: Unfortunately Facebook doesn't allow capture of this data anymore, but a similar assignment could be used that is based on Twitter data or Facebook interaction data.
  • Advanced visualization, analysis, and interpretation assignment. (see Social Network Analysis Homework Assignment.docx). This assignment was created by Derek Hansen for BYU's IT 515R: Web and Social Media Analytics course. Students work on this for several weeks. Ideally they will first get feedback from peers and the instructor on the goals of their analysis and the data they'll be using. Next they create a draft visualization that is shared with their classmates and the instructor for feedback. Finally, they present the results to the class and post them to the NodeXL Graph Gallery (after anonymizing data if it is private).

Selected Courses that Use NodeXL

  • New Media (18060-01) Spring 2013, Fall 2014, Fall 2015, Spring 2016, Department of Library and Information Science, Hannam Universiry, Republic of Korea (South Korea). Instructor: So-Young YU. (see Mapping Social Media of Korean Brands - in Korean Language)
  • Social Web: (Big) Data Mining (JSB454), Summer Semester 2014/2015. Charles University in Prague. Instructor: Jakub Ruzicka
  • Social Media Analytics, Fall 2012, State University of New York at Buffalo. Instructor: Sanjukta Smith
  • Web and Social Media Analytics (IT670), Winter 2012, Fall 2012, Winter 2014, Fall 2016, Brigham Young University's Information Technology Program. Instructor: Derek Hansen
  • Social Network Analysis for Engineers, Summer 2012, University of Tokyo's School of Engineering. Instructor: Petr Matous
  • Research Methods in Political Science (syllabus), Winter 2013, University of Trento, Department of Sociology and Social research. Instructors: Mario Diani, Katia Pilati, Elena Pavan
  • Network Analysis of Social Media Data, Winter 2012, University of Georgia's Grady College of Journalism and Mass Communication. Instructor: Itai Himelboim
  • Communities of Practice (LBSC 708P), Spring 2009, Summer 2010, Spring 2011, University of Maryland's iSchool. Instructor: Derek Hansen
  • Complex Systems in Business (BMGT808L), Spring 2009, University of Maryland's Smith School of Business. Instructor: Bill Rand
  • Social Networks (SOC709), Fall 2009, University of Maryland's Sociology. Instructor: Alan Neustadtl
  • Social Computing and Web 2.0 (BUDT 758v), Fall 2009, University of Maryland's Smith School of Business. Instructor: Xiaoqing Wang
  • Social Networks (COM 380/580), Spring 2011, Illinois Institute of Technology's Communication Department. Instructor: Libby Hemphill. Syllabus
  • Group Processes (Sociology 419/519), Fall 2009, Ohio University, Instructor: Howard Welser
  • Principles of Marketing and Retail / Distribution Management, University of Hawai‘i at Mānoa's Shidler College of Business, Instructor: Jennifer D. Chandler
  • Communication in Groups & Organizations, Carnegie Mellon University's Tepper School of Business, Instructor: Robert Kraut
  • Social Network Analysis (IEMS 341/COMM 395 & IEMS 441/COMM 525), Northwestern University's Industrial Engineering & Management Science and Communication Studies, Instructor: Noshir Contractor (with graduate student Brian Keegan)
  • Journalism in the Networked World (JOUR 390), Northwestern University's Journalism School, Instructor: Rich Gordon (with graduate student Brian Keegan)
  • Online Research Methods (DEMO8087), Australia National University's Australian Demographics and Social Research Institute, Instructor: Robert Ackland
  • Special Topic in Social Research (DEMO8081), Australia National University's Australian Demographics and Social Research Institute, Instructor: Robert Ackland
  • Six Degrees of Separation (UHON 350), Fall 2010, Southern Illinois University. Instructor: Scott McClurg.
  • Project Strategy module course, VIA University College, Denmark. Instructor: Peter G. Harboe
  • Data Analytics (LIS 7491), Winter 2011, Winter 2012, Wayne State's School of Library and Information Science. Instructor: John H. Heinrichs
  • Business Analytics (MIMS2010SBA), IE Business School in Madrid, Spain, Instructor: Jie Mein Goh
  • Literature in a Wired World (ENGL278W), University of Maryland's Department of English, Instructor: Marc Ruppel
  • Information Visualization (ITCS 4121/5121), Spring 2011, University of North Carolina at Charlotte. Instructor: Jing Yang
  • Social Networks - Theories and Applications (COMM3342), Spring 2011, University of Texas at Dallas. Instructor: Cuihua (Cindy) Shen.
  • Current Trends in Social Computing (IS30290), Term 2, 2012-2013, UCD School of Information & Library Science. Instructor: Eric Cook.

Selected NodeXL Publications

  • Smith, M, Shneiderman, B, Milic-Frayling, N, Rodrigues, E, Barash, V, Dunne, C, Capone, T, Perer, A, Gleave, E (April 2009). Analyzing (Social Media) Networks with NodeXL. Proc. Communities & Technologies Conference, Springer (June 2009).
  • Hansen, DL, Shneiderman, B, Smith, MA (2010) Visualizing threaded conversation networks: mining message boards and email lists for actionable insights, 47-62. In Proc. Active Media Technology 2010, Lecture Notes in Computer Science 6335.

Last edited Feb 24, 2016 at 11:25 PM by shakmatt, version 32


No comments yet.